Geometry of stochastic delay differential equations with jumps in manifolds

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Analysis for Stochastic Partial Differential Delay Equations with Jumps

and Applied Analysis 3 (H3) There exists L 2 > 0 satisfying 󵄩󵄩󵄩h(x, y, u) 󵄩󵄩󵄩 2 H ≤ L 2 (‖x‖ 2 H + 󵄩󵄩󵄩y 󵄩󵄩󵄩 2 H ) , (12) for each x, y ∈ H and u ∈ Z. (H4) For ξ ∈ Db F0 0],H), there exists a constantL3 > 0 such that E ( 󵄨󵄨󵄨ξ (s) − ξ (t) 󵄨󵄨󵄨 2 ) ≤ L 3 |t − s| 2 , t, s ∈ [−τ, 0] . (13) We now describe our Euler-Maruyama scheme for the approximation of (1). For any n ≥ 1, let π n : H → H n = span{...

متن کامل

Stochastic Differential Equations with Jumps

Gradient estimates and a Harnack inequality are established for the semigroup associated to stochastic differential equations driven by Poisson processes. As applications, estimates of the transition probability density, the compactness and ultraboundedness of the semigroup are studied in terms of the corresponding invariant measure.

متن کامل

Stochastic differential equations with jumps,

This paper is a survey of uniqueness results for stochastic differential equations with jumps and regularity results for the corresponding harmonic functions. Subject classifications: Primary 60H10; Secondary 60H30, 60J75

متن کامل

Computational Method for Fractional-Order Stochastic Delay Differential Equations

Dynamic systems in many branches of science and industry are often perturbed by various types of environmental noise. Analysis of this class of models are very popular among researchers. In this paper, we present a method for approximating solution of fractional-order stochastic delay differential equations driven by Brownian motion. The fractional derivatives are considered in the Caputo sense...

متن کامل

Periodicity in a System of Differential Equations with Finite Delay

The existence and uniqueness of a periodic solution of the system of differential equations d dt x(t) = A(t)x(t − ) are proved. In particular the Krasnoselskii’s fixed point theorem and the contraction mapping principle are used in the analysis. In addition, the notion of fundamental matrix solution coupled with Floquet theory is also employed.  

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Communications in Probability

سال: 2016

ISSN: 1083-589X

DOI: 10.1214/16-ecp4764